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Abstract

For a set of 846 organic compounds, relevant in forensic analytical chemistry, with highly diverse chemical structures, the gas chromato-
graphic Kovats retention indices have been quantitatively modeled by using a large set of molecular descriptors generated by softwareDragon.
Best and very similar performances for prediction have been obtained by a partial least squares regression (PLS) model using all considered
529 descriptors, and a multiple linear regression (MLR) model using only 15 descriptors obtained by a stepwise feature selection. The standard
deviations of the prediction errors (SEP), were estimated in four experiments with differently distributed training and prediction sets. For
the best models SEP is about 80 retention index units, corresponding to 2.1–7.2% of the covered retention index interval of 1110–3870. The
molecular properties known to be relevant for GC retention data, such as molecular size, branching and polar functional groups are well
covered by the selected 15 descriptors. The developed models support the identification of substances in forensic analytical work by GC–MS
in cases the retention data for candidate structures are not available.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Investigations and developments of mathematical models
that are able to predict chromatographic retention data from
chemical structures data have found wide interest in stud-
ies on quantitative structure–property relationships (QSPRs)
[1]. Typical works in this field deal with 50–200 organic
compounds, often belonging to a strictly defined class of
substances. Aim is usually to create a model by using a
small number of well interpretable molecular descriptors, al-
though a great variety of much more than 1000 descriptors
has been described and suggested for QSPRs[2,3].

Recently published papers on relationships between
molecular descriptors and gas chromatographic retention
data, for instance, deal with sets of 149 alkanes[4], 130
methylalkanes[5], 400 alkenes[6], 150 alkylbenzenes
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[7–10], 200 polycyclic aromatic hydrocarbons[11], 60 poly-
chlorinated naphthalenes[12], up to 100 esters, alcohols,
aldehydes and ketones[13–16], 50 terpenes[17], and up to
400 diverse organic compounds[18–20]. Typically, 20–300
molecular descriptors are tested, and the final models contain
less than 10 selected ones. Most used multivariate methods
are multiple linear regression (MLR), partial least squares re-
gression (PLS), principal component regression (PCR), and
artificial neural networks (ANNs). Previously investigated
compound classes that are related to this study are a set of
about 60 stimulants and narcotics[21], and a set of about 30
chemical warfare agents[22]. A good correlation has been
found between boiling points and retention indices based on
polycyclic hydrocarbons used as standard compounds[23].

In this study, a set of 846 compounds from a database
used in toxicology and forensic GC–MS analyses has been
used to investigate the applicability of QSPR approaches
and standard methods from chemometrics for the prediction
of Kovats retention indices from chemical structure data.
The chemical structures of the considered compounds are
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highly diverse, and most of them contain several functional
groups.

Forensic toxicological analysis is often confronted with
the identification of initially undetermined substances in bi-
ological material. Finding a poison that is a priori unknown
in the case of a suspected intoxication is a difficult task,
because many compounds have to be considered (toxicity
depends on dose) but identification criteria of only about
7000 drugs or pesticides are presently available. Further-
more, new compounds—such as designer drugs—may be
present. The most used analytical technique in this field is
GC–MS. It has been shown that a combination of sophisti-
cated sample preparation[24], strictly defined experimental
conditions for GC–MS, an appropriate database[25] and
new software concepts[26] for selection and comparison
of mass spectra greatly facilitates the identification of poi-
sons in biological materials. Although mass spectra are
indispensable data for substance identification and structure
elucidation, chromatographic retention data are very useful
too [27]; for instance isomeric compounds often have very
similar mass spectra, and some classes of compounds show
non-specific mass spectra. Because many spectroscopic
databases do not contain chromatographic retention data,
an automatic prediction of retention indices from chemical
structures would be helpful for the identification of a priori
unknown compounds[28].

The strategy applied in this study is in some aspects dif-
ferent from previous works on retention index modeling. A
relative large set of 846 organic compounds with very di-
verse chemical structures was used, and the initial number
of molecular descriptors was 1497. Selection of subsets of
descriptors was guided by mathematical principles but not
by chromatographic experiences. Easily available software
has been applied for the generation of molecular descrip-
tors (Dragon) and for a conversion of two-dimensional (2D)
structures into three-dimensional (3D) structures (WebLab
Viewer); both were offered for free download at the time of
this work. For multivariate regression a widely used chemo-
metric software (Unscrambler) was applied for a compar-
ison of the routinely used linear calibration methods PLS,
PCR, and MLR.

2. Data and software

2.1. Database

The database used is a subset of the database “Mass spec-
tral and GC data of drugs, poisons, pesticides, pollutants
and their metabolites”[25] containing 4367 entries. A set
of 846 compounds has been selected for this work, with
molecular masses between 109 and 491 (median 260), and
non-hydrogen elements in the ranges C4–32 N0–7 O0–11 S0–4
P0–2 F0–6 Cl0–10 Br0–2 I0–1. Table 1lists prominent cat-
egories of forensic relevant substances, demonstrating the
high structural diversity of the used data set. For reference,

Table 1
Prominent substance categories in the used data set of toxicologically
relevant compounds

No. Category No. of compounds

1 Insecticides 88
2 Herbicides 74
3 Hypnotics 57
4 Antihistamines 40
5 Neuroleptics 35
6 Fungicides 26
7 Tranquilizers 25
8 Antidepressants 22
9 Chemicals 21

10 Fatty acids 19
11 Potent analgesics 19
12 Hydrocarbons 17
13 Stimulants 15
14 Analgesics 14
15 Biomolecules 14
16 Others 360

Sum 846

n-alkanes with 14 to 30 C-atoms have been included. The
Kovats retention indices (I) [29,30] of the compounds are
between 1110 and 3870 with a median of 2000. Packed
and capillary columns with apolar stationary phases, such
as methylpolysiloxanes (e.g. HP1, OV-101) were used in
building the retention index database[25]. Therefore, an in-
herent variability of the listed retention indices is present.
Based on laboratory experiences the differences between ex-
perimental and listed values have to be expected in a range
of about plus/minus 50 retention index units. That is higher
than reported for homogeneous groups of compounds, as for
instance plus/minus 3 units for alkylbenzenes[7] or alkanes
[31].

2.2. Software

Molecular descriptors have been generated by software
Dragon, version Web 3.0[32]. Conversion of 2D structures
into 3D structures was performed with softwareWebLab
Viewer, version 3.50[33]. Statistical evaluation of data and
multivariate data analysis have been performed mainly by
the software productsUnscrambler, version 7.8[34], and
Systat, version 10.0[35]. Additional programs have been
developed in Matlab 6.0[36] for handling of chemical struc-
tures and for data analysis. All work has been performed
on personal computers running under operating system Mi-
crosoft Windows 2000; the reported computing times refer
to a machine with 2 GHz.

3. Methods

3.1. Conversion of 2D structures into 3D structures

Software Dragon requires chemical structures with all
H-atoms given explicitly, and a part of the molecular
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descriptors generated are 3D descriptors requiring 3D coded
structures. The chemical structures available were 2D struc-
tures encoded in Molfile/SDF format[37]. SoftwareWebLab
Viewer was applied as an easy to use and convenient tool
for 3D conversion and for adding missing H-atoms. The
resulting 3D structures, however, are not energy optimized
and may be in some cases only crude approximations. A
Matlab program, that calls theWebLab Viewer, has been de-
veloped for an automatic conversion of all structures in an
SDF-file; average computing time was 0.2 s per converted
structure. The output file is again in Molfile/SDF format,
appropriate for input into softwareDragon.

The practicability of 3D descriptors is doubtful, espe-
cially for a set with very diverse chemical structures as used
in this study[38]. Energy optimization methods are very
time-consuming and may introduce artifacts depending on
the substance class. Furthermore, flexibility of the molecules
is not considered by the used descriptors. In a recent quanti-
tative structure–activity relationship (QSAR) toxicity study
was found that molecular descriptors, computed from 2D
and 3D structures, gave models with very similar predictive
power [39]. Within the data-driven strategy applied in this
study, the 3D descriptors have not been eliminated a priori.

3.2. Generation of molecular descriptors

The used softwareDragon is capable of generating 1497
molecular descriptors; the descriptors are divided into 18
groups as shown inTable 2. Average computing time for
all descriptors was 2.5 s per structure; input file was in
SDF-format (seeSection 3.1); output file was in text format

Table 2
Groups of the 1497 molecular descriptors generated by softwareDragon
[3,32]

Group
no.

Group name Dimensionality No. of
descriptors

1 Constitutional descriptors 0 47
2 Topological descriptors 2 266
3 Molecular walk counts 2 21
4 BCUT descriptors 2 64
5 Galvez topological

charge indices
2 21

6 2D autocorrelation
descriptors

2 96

7 Charge descriptors 3 14
8 Aromaticity indices 3 4
9 Randic molecular profiles 3 41

10 Geometrical descriptors 3 70
11 RDF descriptors 3 150
12 3D-MoRSE descriptors 3 160
13 WHIM descriptors 3 99
14 GETAWAY descriptors 3 197
15 Functional groups 1 121
16 Atom-centered fragments 1 120
17 Empirical descriptors 1 3
18 Properties 1 3

Sum 1497

and was imported into softwareUnscrambler, Systat, and
Matlab programs.

3.3. Regression models

Aim of the work was the development of a mathematical
model that uses molecular descriptors,xj with j = 1 . . . p,
as input variables (features) and is capable of producing an
output, I∗, that is a good estimation of the corresponding
experimental retention index,I. A linear model is given by:

I∗ = b0 + b1x1 + b2x2 + · · · + bpxp (1)

with bj being the regression coefficient for descriptorj,
andb0 the intercept. The regression methods compared are
multiple linear regression, (MLR: ordinary least squares re-
gression), principal component regression (PCR), and partial
least squares regression (PLS)[40–42]. The last two meth-
ods are capable to handle large sets of variables, are tolerant
to co-linearities, and can be optimized for maximum predic-
tion. The 846 compounds have been divided into two ran-
dom samples, a training set including 700 compounds, and a
prediction set with 146 compounds. The number of descrip-
tors used was between 15 and 529 selected by the methods
described inSection 3.5. For PCR and PLS the descriptor
values have been autoscaled.

The number of components used in PCR and PLS mod-
els has been determined by a cross-validation within the
training set (seeSection 3.4). After cross-validation, a new
model has been built from the whole training set with the
determined number of components. Finally, this model was
applied to the prediction set. Computing time for linear
models was between 5 and 50 s, depending on the num-
ber of used descriptors. All methods have been applied
four-fold with different randomly selected compositions of
training and prediction set.

3.4. Evaluation of regression models

The prominent goal of the regression models is a good
performance for the prediction of retention indices for com-
pounds not used in the training. The standard error of pre-
diction (SEP) is a measure for this quality, defined as[41]:

SEP=
[

1

n − 1

∑
(I∗

i − Ii − bias)2
]0.5

i = 1 · · · n
(2)

bias=
(

1

n

) ∑
(I∗

i − Ii) i = 1 · · · n (3)

with I∗
i being the estimated retention index of compoundi

in the prediction set,Ii the corresponding database value,
and n the number of compounds. The bias corresponds to
the mean of the prediction error, and SEP is equivalent to
the standard deviation of the bias-corrected prediction error.

The standard error of prediction for cross-validation
(SEPCV) is calculated in the same way but the estimated
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retention indices are those predicted during cross-validation
within the training set. The standard error of calibration
(SEC) refers to the estimated retention indices in the train-
ing set using a model that was calculated from the whole
training set after cross-validation.

Correlation coefficientsrp and rc characterize the linear
relationship between experimental and calculated retention
indices for the prediction set and the training set, respec-
tively.

The importance, IMPj, of a descriptorj in a linear model
has been measured by the standardized regression coefficient
[43]:

IMPj = (bjsj)

sy
(4)

with bj being the regression coefficient for descriptorj in
the model (Eq. (1)), sj the standard deviation of descriptor
j, andsy the standard deviation of the response (I); all calcu-
lated from the training set. IMP is identical to the regression
coefficient obtained from autoscaled data.

For PCR and PLS an appropriate number of components
has been determined from a plot showing SEPCV versus the
number of components used, obtained by a cross-validation
with 10 segments. Because this curves not always have a
clear minimum, a heuristic strategy has been applied as fol-
lows. The maximum number of components considered was
40, or the number of descriptors if less than 40. If SEPCV
shows a clear minimum then the minimum determines the
number of components used for the model (even if it is the
maximum number of components tested). If no clear min-
imum appears, the lowest number of components has been
chosen that gives a SEPCV approximately 1% above the
found minimum.

3.5. Feature selection

A working subset of 529 descriptors was selected from
the 1497 generated descriptors by routine methods as fol-
lows: (1) descriptors which are constant have been elim-
inated (107 descriptors eliminated); (2) descriptors which
are almost constant—that means all but a maximum of five
values are constant—have been eliminated (52 descriptors
eliminated); (3) descriptors containing very low or very high
values have been eliminated. The thresholds used were de-
fined as the 5 and 95% quantiles of the distribution given
by the values of all remaining descriptors (472 descriptors
eliminated); (4) for all pairs of remaining descriptors the
correlation coefficient was determined. If a correlation co-
efficient was higher than 0.95 then the descriptor with the
larger sum of correlation coefficients with the other descrip-
tors has been eliminated. In this step, 337 descriptors have
been eliminated resulting in the working set withp = 529
descriptors.

Three further methods for feature selection have been
tested for the working set data.

(a) Selection of descriptors possessing highest absolute cor-
relation coefficients with the retention index calculated
from the training set. Resulting subsets with 200, 100,
and 15 descriptors have been tested.

(b) Elimination of descriptors with small absolute regres-
sion coefficientsbj (Eq. (1)) obtained for a PCR or a
PLS model from a training using all 529 descriptors.
With the remaining descriptors a new model has been
computed.

(c) A forward stepwise feature selection based on
F-statistics together with MLR, as implemented in soft-
wareSystat, has been used. For a significance level of
1% a subset with 15 descriptors has been obtained.

4. Results

4.1. Introduction

The results obtained with different regression methods
and different sets of descriptors are summarized inTable 3,
and are discussed in the following subsections. Note that
SEP and SEC are means of four experiments with differ-
ent random compositions of training and prediction set. A
value of 82 retention index units for SEP is considered as
a reference for comparisons of methods and datasets, since
this value has been obtained for the chemometric standard
method PLS directly applied to the working data set with
all 529 descriptors. The prediction errors, SEP, of the four
experiments were 75, 88, 85, and 79, demonstrating that a
SEP obtained from a single experiment may be misleading

Table 3
Results obtained for different regression methods and different subsets of
descriptors

Method p Feature selection SEP SEC

PLS 529 Reference 82 54
200 Correlation coefficient 122 92
100 Correlation coefficient 119 109
15 Correlation coefficient 154 157
15 Stepwise 79 81

301 Excluding 3D descriptors 79 58
202 Regression coefficient 79 58

PCR 529 – 114 111
200 Correlation coefficient 145 140
100 Correlation coefficient 150 141
15 Correlation coefficient 158 164
15 Stepwise 79 81

MLR 200 Correlation coefficient 115 74
100 Correlation coefficient 125 108
15 Correlation coefficient 156 157
15 Stepwise 79 81
13 Stepwise, then excluding

3D descriptors
92 95

p: number of descriptors; SEP: standard error of prediction; SEC: standard
error of calibration. SEP and SEC are means from four experiments with
different random samples for training (700 objects) and prediction (146
objects).
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because of an accidental composition of training and pre-
diction set. The corresponding calibration errors, SEC, were
55, 53, 53, and 55; as expected SEC is lower then SEP and
less fluctuating. The same trend was found for other data sets
and methods; in a few cases, SEP and SEC were similar. It
is instructive to compare the results with those obtained af-
ter a random assignment of the retention indices to the 846
compounds; for instance PLS with 529 descriptors yielded
a SEC of 322 and a SEP of 875.

4.2. Comparison of methods

Using all 529 descriptors, PLS regression resulted in much
better models (averaged SEP= 82) than PCR (averaged
SEP = 114); MLR was not applicable because of high
co-linearities of the descriptors. Feature selection by using
a set of descriptors possessing maximum correlation coef-
ficient with the retention index was not successful; subsets
with 200, 100 or 15 descriptors selected by this method gave
models with a much higher SEP than models calculated from
all 529 descriptors. Again PLS was in general better than
PCR but similar to MLR; for instance for a subset with 100
descriptors, SEP was 119, 150, and 125 for PLS, PCR, and
MLR, respectively.

The elimination of descriptors possessing small absolute
regression coefficients is demonstrated by an example. Ap-
plication of PLS with all 529 descriptors and using 15 com-
ponents resulted in a model with regression coefficientsbj

(j = 1–529) between−0.039 and 0.083. For a selection
of descriptors with close to zero regression coefficients five
threshold between 0.005 and 0.03 have been applied, and de-
scriptors with a regression coefficient higher than the thresh-
old were used for a new PLS model.Fig. 1 shows that
SEPCV is lowest for absolute thresholds between 0.01 and
0.02, corresponding to 63 to 197 selected descriptors. The
corresponding values for SEP are between 77 and 81 which
is better than 88 obtained with all descriptors. Feature se-
lection by deleting descriptors with close to zero regression
coefficients was capable of improving the models, however,
an optimization of the applied threshold is required.Table 3
contains the average of four experiments with a mean of
202 selected descriptors and a mean of 79 for SEP which
is much better than the SEP of 122 for 200 descriptors se-
lected by maximum correlation coefficient with the retention
index. However, the improvement is small in comparison
with models calculated from all 529 descriptors (SEP= 82).
Also PCR showed an increase in the prediction performance
when applying this feature selection method but could not
reach the performance of PLS models. For MLR, this feature
selection method has been applied to the previously selected
200 descriptors (maximum absolute correlation coefficient
with the retention index); the results showed a decrease in
the prediction performance.

A forward stepwise feature selection—as implemented in
softwareSystat for MLR—resulted in a subset with 15 de-
scriptors. The MLR models of four experiments with differ-
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Fig. 1. Performance of PLS models with descriptors selected by a threshold
of the regression coefficients as obtained in a PLS model with all 529
descriptors.

ent training and prediction sets yield an averaged SEP of 79,
which is slightly better than the SEP for a PLS model using
all descriptors. Note that a set of 15 descriptors, selected by
maximum absolute correlation coefficients between descrip-
tor and retention index, gives a much larger SEP between
154 and 158. PLS or PCR applied to the set with 15 stepwise
selected descriptors gave the same models as MLR because
the optimum number of components was 15 in these cases.

As discussed inSection 3.1, the applicability of 3D de-
scriptors is not clear for the compounds used in this study.
Excluding the 3D descriptors from the 529 descriptors re-
sulted in a set of 301 descriptors. Application of PLS to
these data yielded models with an average SEP of 79; this
value is similar to the reference value 82 (PLS with 529 de-
scriptors); so the 3D descriptors have almost no influence.
The set of 15 stepwise selected descriptors contains two 3D
descriptors (seeSection 4.3); elimination of them increases
SEP from 79 (15 descriptors) to 92 (13 descriptors).

Furthermore, in a preliminary test artificial neural net-
works[20,44]have been applied. To avoid a time-consuming
feature selection the 15 descriptors found by stepwise
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selection were used. The final non-linear model obtained
by a back propagation training had a similar performance
as the MLR model computed from the same descriptors.

4.3. Discussion of a linear model with a small set of
descriptors

The model which best combines simplicity and high pre-
dictive performance is the MLR model calculated from 15
descriptors obtained by forward stepwise feature selection.
The parameters of this model, obtained from the training
set with autoscaled data, are given inTable 4, together with
the parameters of the corresponding PLS model. The impor-
tances, IMPj, of the descriptors are very similar for MLR
and PLS. This result is remarkable because MLR optimizes
the fit to the training set, while PLS optimizes the prediction
performance by cross-validation; obviously, the data set is
large enough to give similar results for both approaches.

A final MLR model has been calculated with the same de-
scriptor set, but using all 846 compounds. The regression co-
efficients and their standard errors (for unscaled descriptors
as generated by softwareDragon) are given in the last two
columns ofTable 4. They are very similar to those obtained
from the training set with 700 compounds (not shown). Also
the values for SEC andrc (81 and 0.987, respectively) of
this model are almost identical with the values obtained for
the training set (82 and 0.987, respectively).

Selection of the 15 descriptors was based on mathematical
criteria; therefore one cannot expect that all descriptors can
be well interpreted in terms of chromatography. Features 1
and 2 are constitutional descriptors (group 1,Table 2). One
of them, descriptor RBN is equal to the number of rotatable
bonds; large numbers for RBN indicate a high flexibility

Table 4
MLR model and PLS model (with 12 components) using 15 descriptors selected by a forward stepwise procedure

j Descriptor code Descriptor name or variable m s IMPj MLR IMPj PLS bj MLR

0 Intercept – – – – −386.8± 39.3
1 RBN (1/0) Number of rotatable bonds 6.177 4.698 −0.146 −0.129 −15.6 ± 1.2
2 nF (1/0) Number of Fluorine atoms 0.080 0.490 −0.051 −0.050 −52.1 ± 7.0
3 Xt (2/2) Total structure connectivity index 0.010 0.017 0.074 0.070 2149.0± 262.0
4 X2sol (2/2) Solvation connectivity index chi-2 8.091 2.389 0.387 0.424 81.4± 2.4
5 RDCHI (2/2) Reciprocal distance Randic-type index 2.929 0.528 0.572 0.536 543.2± 17.6
6 GATS2e (6/2) Geary autocorrelation-lag 2 0.858 0.373 −0.050 −0.042 −67.6 ± 11.1
7 H5u (14/3) H autocorrelation of lag 5/unweighted 0.861 0.656 0.155 0.141 118.5± 10.4
8 H6u (14/3) H autocorrelation of lag 6/unweighted 0.627 0.576 0.050 0.054 43.3± 13.3
9 nCaR (15/1) Number of substituted aromatic C (sp2) 2.789 2.022 0.209 0.209 51.8± 2.1

10 nROR (15/1) Number of ethers (aliphatic) 0.119 0.373 −0.057 −0.060 −77.0 ± 8.9
11 C-001 (16/1) CH3R 1.131 1.288 −0.083 −0.087 −32.5 ± 3.5
12 H-050 (16/1) H attached to hetero atom 0.764 0.903 0.152 0.154 84.5± 3.9
13 N-072 (16/1) RCO–N< 0.351 0.639 0.088 0.089 69.0± 5.7
14 N-073 (16/1) Ar2NH/Ar3N/R..N..R 0.069 0.352 0.062 0.062 88.5± 9.1
15 S-107 (16/1) R2S/RS-SR 0.117 0.367 0.087 0.069 118.3± 9.7

I Kovats retention index 2062 502 – – –

Descriptor codes (group/dimensionality) and names are fromDragon software[32]; j, descriptor number;m, mean (from training set with 700 compounds);
s, standard deviation (from training set); IMPj , importance of descriptorj (from training set). The regression coefficientsbj (±standard error) are for a
MLR model trained with all 846 compounds using not scaled descriptors as generated by softwareDragon.

of the molecules, and are connected with a decrease of the
retention index (IMP is−0.146 for the MLR model). The
other constitutional descriptor,nF, is the number of F-atoms;
it has a similar—but less intensive—effect.

Features 3–5 are topological descriptors (group 2); Xt
characterizes molecular branching; X2sol describes disper-
sion interactions in solution. The reciprocal distance index
RDCHI increases with molecular size but decreases with
molecular branching[32]. Descriptors 4 and 5 show the most
prominent positive effect on the retention index of all 15 de-
scriptors with IMP values of 0.387 and 0.572, respectively.
For instance an increase of dispersion interactions increases
the retention index, which is in agreement with experimen-
tal experiences. The retention data used in this work have
been obtained on apolar stationary phases; it is known that
for this type of phases, dispersion interactions are impor-
tant. The other descriptor, RDCHI, with a high positive in-
fluence on the retention index characterizes size and branch-
ing of molecules. Also the influence of this descriptor cor-
responds to experience because a larger molecular size and
less branching increase the retention index.

Descriptors 7 and 8 belong to the GETAWAY group (ge-
ometry, topology and atom-weights assembly), recently de-
veloped by Todeschini et al.[32]. They are the only 3D
descriptors in the model. Descriptor 9,nCaR, describes the
number of substituted aromatic C-atoms; it shows a distinc-
tive positive effect on the retention index. Descriptor 10,
nROR, describes the number of aliphatic ether functions. De-
scriptors 11–15 give the number of specified atom-centered
fragments present in the molecule; three of these fragments
contain a hetero atom (R means aliphatic, Ar means aryl).
The presence of fragment CH3 has a small negative effect,
presence of the other fragments a small positive effect on
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Fig. 2. Graphical representation of the correlation coefficients between
the 15 selected molecular descriptors (seeTable 4). Size of symbols is
proportional to the absolute value of the correlation coefficient; positive
values are denoted by circles, negative values by triangles.

the retention index. For instance, descriptor 12 denotes the
number of hydrogen atoms attached to a hetero atom and
has an importance IMP of 0.152 in the MLR model.

The highest correlation coefficients with the retention in-
dex, as calculated from training set data, have descriptors
4 (X2sol, correlation coefficient 0.871), 5 (RDCHI, 0.863),
and 7 (H5u, 0.655). These values, however, are considerable
lower than the correlation coefficients obtained for the out-
put of multivariate models (for instance 0.987 for a MLR
model using 15 descriptors). The correlation coefficient ma-

Table 5
Example compounds with experimental and predicted retention indices,I. Compound1: N-morpholino-1-cyclohexene (a psychedelic designer drug), CAS
reg. no. 670804; compound2: hydrocotarnine (an ingredient of opium), CAS reg. no. 550107; compound3: methyl ethacrynate (a diuretic), CAS reg.
no. 6463214; compound4: cypermethrin (an insecticide), CAS reg. no. 52315078

No. Structure Molecular mass Experimental,I Prediction error ofI

MLR PLS-529

1 N       O 167.25 1260 71 92

2 N

O

O

O

221.25 1790 −17 −66

3
O

O

O

Cl
Cl O

317.16 2195 −9 62

4
O

O

CNO

Cl

Cl

416.30 2815 113 −97

For the MLR model, a subset of 15 descriptors obtained by forward stepwise feature selection has been used; for the PLS-529 model all descriptors.
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Fig. 3. Retention indices,I∗, predicted by an MLR model, vs. experimental
values,I, from database. A subset of 15 descriptors obtained by forward
stepwise feature selection has been used; size of training set was 700,
size of prediction set 146 (shown); SEP is 74;rp is 0.988.

trix of the 15 selected descriptors is graphically represented
in Fig. 2. Maximum correlations occur between the two 3D
descriptors number 7 and 8 (H5u and H6u, correlation co-
efficient 0.823) and between 4 and 5 (X2sol and RDCHI,
0.744). These four descriptors are similar when considering
their correlations to the other descriptors. Such similarities
of features can be recognized in the plot by a visual compar-
ison of the symbols in the rows (or columns). For instance
rows 5 and 7 are similar, also 3 and 12; but the first pair of
descriptors is very different from the second pair.

In summary, molecular properties which are known to
be relevant for gas chromatographic retention data—such
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as molecular size, branching, polar functional groups—are
well covered by the automatically selected 15 descriptors.

4.4. Examples

In Fig. 3, the retention indices as predicted by a MLR
model are compared with the experimental values from the
database. The subset of 15 descriptors obtained by forward
stepwise feature selection has been used; size of the train-
ing set was 700, size of the prediction set was 146. Four
example compounds have been selected from the prediction
set and detailed results are given inTable 5. The mean of
the absolute errors for these four compounds is 52.5 for the
MLR model and 79.3 for the PLS-529 model. Retention in-
dices for compounds 2 and 3 are better predicted (with ab-
solute errors between 9 and 62) than for compounds 1 and
4 (absolute errors between 71 and 113).

5. Summary and conclusions

Aim of the work was to investigate the applicability of
standard software and standard methods—as widely used
for the generation of molecular descriptors and for multi-
variate data analysis—for the prediction of gas chromato-
graphic Kovats retention indices of toxicological relevant
organic compounds. The used set of 846 compounds with
two-dimensionally encoded molecular structures contains
substances from diverse structural and toxicological cate-
gories. SoftwareWebLab Viewer was applied to add hydro-
gen atoms as explicitly given atoms and to generate simple
3D structure proposals. The resulting chemical structures,
encoded in Molfile format, were directly used as input for
the Dragon software which calculated 1497 numerical de-
scriptors for each molecular structure. A first step of feature
selection eliminated constant descriptors and high correla-
tions between descriptors, and resulted in a working data set
with 529 descriptors. An advantage of softwareDragon is
a fast computation of descriptors, avoiding time-consuming
quantum-chemical calculations.

Straight forward application of the chemometric standard
method PLS by softwareUnscrambler to the data set with
529 descriptors gave linear models, exhibiting an averaged
standard error of prediction of 82 retention index units. A
drawback of this approach is the large number of descriptors
in the model making an interpretation of the model param-
eters difficult.

For multiple linear regression a subset of 15 descriptors
was selected by a forward stepwise variable selection pro-
cedure implemented in softwareSystat. Although this fea-
ture selection has the goal of best fitting the training data,
the resulting linear model has a standard error of predic-
tion of only 79 retention index units. An advantage of this
approach is the fact that the influence of the selected de-
scriptors on the predicted retention index can be easily in-
terpreted.

A feature selection based only on maximum absolute cor-
relation coefficients between descriptors and retention index,
yielded models with a considerably lower prediction perfor-
mance than obtained with all descriptors or with the subset
of 15 descriptors described above. A feature selection based
on maximum regression coefficients resulted in good PLS
models with an averaged SEP of 79, however needing about
200 descriptors.

The rather large prediction errors are probably due to
the high diversity of the investigated chemical structures,
the different GC-column technologies used for establishing
the data, and the simple methods applied for 3D structure
generation, feature selection, and modeling.

For the identification of a priori unknown compounds as a
part of systematic toxicological analyses (often called gen-
eral unknown analysis), first the chromatographic retention
data are obtained. Next step is a comparison of the measured
mass spectrum with reference spectra from a database. The
resulting hitlist contains the reference spectra most similar
to the spectrum of the unknown, but such a hitlist not al-
ways allows the identification of an unknown. For instance,
the GC–MS database[25] widely used for the evaluation of
forensic analyses, contains about 20 compounds with mass
spectra exhibiting almost only the base peak at mass 58,
originating from ions (CH3)2 NCH2

+. These compounds
cannot be identified solely by their mass spectra, however,
most of them could be distinguished by their retention in-
dices ranging from 1230 (cyclopentadrine, CAS reg. No.
102454) to 2565 (cyamemazine, CAS reg. No. 3546030).
The method presented here enables an automatic estimation
of retention indices from the molecular structure, using a
model derived from about 800 toxicologically relevant com-
pounds. The identification of unknowns in GC–MS analyses
can be supported by excluding hitlist structures which give
predicted retention indices very different from the experi-
mental values; thus the identification of unknown poisons is
facilitated.
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